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Motivation
• Visual perception: understand the surrounding physical environment

• Requires solving different problems

• Abstractions of real world
• Useful for many downstream tasks, e.g. navigation [1]

• Deep learning (DL) approaches are getting better and better [1],[2],[3]
• Is it always the case?

Visual Perception 9

…



Motivation
• Robustness: resilience to distribution shifts

Robustness 10



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

Robustness 11



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

Robustness 12



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

Robustness 13



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

Robustness 14



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

Robustness 15



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

• Model may be wrong sometimes

Robustness 16



Motivation
• Robustness: resilience to distribution shifts

• A critical requirement for practical applications

• Model may be wrong sometimes
• Should be able to say “Hey, I’m not sure!”
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Brad Templeton. “Tesla In Taiwan Crashes Directly Into Overturned Truck, Ignores Pedestrian, With Autopilot On”. Forbes, 2020.



Motivation
• Uncertainty: A mechanism to understand model limitations

• Can be used for
• improving robustness
• improving decision making
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Jessica Guynn. “Google photos labeled black people ’gorillas’”. USA Today, 2015.



Motivation
• 3 background papers

• "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?" (Alex Kendall, Yarin Gal) [4]

• "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles" (Balaji Lakshminarayanan, Alexander 
Pritzel, Charles Blundell) [5]

• "On Calibration of Modern Neural Networks" (Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger)
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What Uncertainties Do We Need in Bayesian 
Deep Learning for Computer Vision? [4]
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• Deep learning has good performance, but is it always the case?

• Tesla crash, Google photos labelling, etc.

• What happens when the model fails?
• Need for an alarm mechanism

What Uncertainties Do We Need in Bayesian Deep Learning for 
Computer Vision?

29

“We are mostly interested in knowing how likely certain outcomes are 
rather than just using the most likely one”



Solution
• Sources of uncertainty

• Modelling uncertainty
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Solution
• Sources of uncertainty

• Aleatoric uncertainty
• Data uncertainty 

• Captures noise inherent in the observations
• A function of input

• E.g. sensor noise and blur
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Solution
• Sources of uncertainty

• Aleatoric uncertainty
• Data uncertainty 

• Captures noise inherent in the observations
• A function of input

• E.g. sensor noise and blur

• Can’t decreased with more data

• Can decrease with increasing sensing ability
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Solution
• Sources of uncertainty

• Aleatoric uncertainty
• Two variants

• Homoscedastic : Constant for all inputs
• Could change between tasks
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Solution
• Sources of uncertainty

• Aleatoric uncertainty
• Two variants

• Homoscedastic : Constant for all inputs
• Could change between tasks

• Heteroscedastic : Changes between inputs
• Useful for vision tasks

• Could be learned from data
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Solution
• Sources of uncertainty

• Epistemic uncertainty
• Model uncertainty

• Captures uncertainty in model parameters
• “Which model generated our data?”
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Solution
• Sources of uncertainty

• Epistemic uncertainty
• Model uncertainty

• Captures uncertainty in model parameters
• “Which model generated our data?”

• Can be decreased with more data
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Solution
• Sources of uncertainty

• Aleatoric vs Epistemic
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• Sources of uncertainty 

• Modelling uncertainty
• Aleatoric uncertainty

• Function of input

• Model it over outputs

• Epistemic uncertainty: 
• Function of model 

• Model it over parameters (i.e. weights)

Solution
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Solution
• Modelling aleatoric uncertainty

• Regression model with parameters 𝜃

• Dataset: input 𝑋 = {𝑥1, … , 𝑥𝑁} and label Y = {𝑦1, … , 𝑦𝑁}

• Assume Gaussian likelihood
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Solution
• Modelling aleatoric uncertainty

• Regression model with parameters 𝜃

• Dataset: input 𝑋 = {𝑥1, … , 𝑥𝑁} and label Y = {𝑦1, … , 𝑦𝑁}

• Assume Gaussian likelihood

• Negative log-likelihood loss (NLL)

• 𝐿𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2𝜎 𝑥𝑖
2 𝑦𝑖 − 𝑓 𝑥𝑖 2

2 +
1

2
log 𝜎 𝑥𝑖

2
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Solution
• Modelling aleatoric uncertainty

• Regression model with parameters 𝜃

• Dataset: input 𝑋 = {𝑥1, … , 𝑥𝑁} and label Y = {𝑦1, … , 𝑦𝑁}

• Assume Gaussian likelihood

• Negative log-likelihood loss (NLL)

• 𝐿𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2𝜎 𝑥𝑖
2 𝑦𝑖 − 𝑓 𝑥𝑖 2

2 +
1

2
log 𝜎 𝑥𝑖

2

• Predict mean 𝑓 𝑥𝑖 and variance 𝜎 𝑥𝑖
2

• Use them in the NLL 

• No label needed for 𝜎 𝑥𝑖
2
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Solution
• Modelling aleatoric uncertainty

• Negative log-likelihood loss (NLL)

• 𝐿𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2𝜎 𝑥𝑖
2 𝑦𝑖 − 𝑓 𝑥𝑖 2

2 +
1

2
log 𝜎 𝑥𝑖

2

• For heteroscedastic case, changes with input 𝑥𝑖
• For homoscedastic case, constant free parameter
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Solution
• Modelling aleatoric uncertainty

• Negative log-likelihood loss (NLL)

• 𝐿𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2𝜎 𝑥𝑖
2 𝑦𝑖 − 𝑓 𝑥𝑖 2

2 +
1

2
log 𝜎 𝑥𝑖

2

• For heteroscedastic case, changes with input 𝑥𝑖
• For homoscedastic case, constant free parameter

• Balance between 1&2
• Can’t be overconfident (1   )

• Can’t be over-uncertain (2 )

• No manual tuning
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Solution
• Sources of uncertainty 

• Modelling aleatoric uncertainty

• Modelling epistemic uncertainty
• Assume a prior over model weights 𝑊, e.g. 𝑊~𝑁(0, 𝐼)

• Compute posterior 𝑝 𝑊 𝑋, 𝑌 = 𝑝 𝑌 𝑋,𝑊 𝑝(𝑊)/𝑝(𝑌|𝑋)
• Intractable, hence approximate

• They use MC dropout [4]
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Solution
• Sources of uncertainty 

• Modelling aleatoric uncertainty

• Modelling epistemic uncertainty
• Assume a prior over model weights 𝑊, e.g. 𝑊~𝑁(0, 𝐼)

• Compute posterior 𝑝(𝑊|𝑋, 𝑌) = 𝑝 𝑌 𝑋,𝑊 𝑝(𝑊)/𝑝(𝑌|𝑋)
• Intractable, hence approximate

• They use MC dropout [5]

• MC dropout
• Training time: Use dropout for every weight layer

• Test time: Use dropout to sample from posterior

• Variance of the samples: Epistemic uncertainty
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Solution
• Combining both uncertainties 

• Output both mean ො𝑦 and variance ො𝜎2

• Use the NLL for training 
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Solution
• Combining both uncertainties 

• Output both mean ො𝑦 and variance ො𝜎2

• Use the NLL for training 
• 𝑠𝑖: = log ො𝜎𝑖

2 for numerical stability

• 𝑓 𝑊 = [ො𝑦, ො𝜎2]

• 𝐿𝐵𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2
exp(−𝑠𝑖) 𝑦𝑖 − ො𝑦𝑖 2

2 +
1

2
𝑠𝑖
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Solution
• Combining both uncertainties 

• Output both mean ො𝑦 and variance ො𝜎2

• Use the NLL for training 
• 𝑠𝑖: = log ො𝜎𝑖

2 for numerical stability

• 𝑓 𝑊 = [ො𝑦, ො𝜎2]

• 𝐿𝐵𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2
exp(−𝑠𝑖) 𝑦𝑖 − ො𝑦𝑖 2

2 +
1

2
𝑠𝑖

• Perform 𝑇 passes with dropout enabled (test time)
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Solution
• Combining both uncertainties 

• Output both mean ො𝑦 and variance ො𝜎2

• Use the NLL for training 
• 𝑠𝑖: = log ො𝜎𝑖

2 for numerical stability

• 𝑓 𝑊 = [ො𝑦, ො𝜎2]

• 𝐿𝐵𝑁𝑁 𝜃 =
1

𝑁
σ𝑖=1
𝑁 1

2
exp(−𝑠𝑖) 𝑦𝑖 − ො𝑦𝑖 2

2 +
1

2
𝑠𝑖

• Perform 𝑇 passes with dropout enabled (test time)

• Final predictive uncertainty is the summation of both terms

• 𝑉𝑎𝑟 𝑦 ≈
1

𝑇
σ𝑡=1
𝑇 ො𝜎𝑡

2 +
1

𝑇
σ𝑡=1
𝑇 ො𝑦𝑡

2 −
1

𝑇
σ𝑡=1
𝑇 ො𝑦𝑡

2
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Results
• Pixel-wise depth regression and semantic segmentation

• Aleatoric uncertainty as loss attenuation
• Improves accuracy 

• Modelling both uncertainties improve further
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Results
• Pixel-wise depth regression and semantic segmentation

• Aleatoric uncertainty as loss attenuation
• Improves accuracy 

• Modelling both uncertainties improve further
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Results
• Precision decreases with increasing uncertainty

53
What Uncertainties Do We Need in Bayesian Deep Learning for 

Computer Vision?



Results
• Epistemic uncertainty decreases with increasing training data 
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Results
• Epistemic uncertainty decreases with increasing training data 

• Aleatoric uncertainty does not decrease with more data
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Results
• Epistemic uncertainty decreases with increasing training data 

• Aleatoric uncertainty does not decrease with more data

• Epistemic uncertainty increases with distribution shift
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Discussion

• Combining different sources of uncertainty
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Discussion

• Combining different sources of uncertainty

• Showcasing results for both regression and classification tasks

• Aleatoric uncertainty adds negligible compute

• Epistemic uncertainty needs multiple passes
• Real-time application?
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Simple and Scalable Predictive Uncertainty 
Estimation Using Deep Ensembles [6]
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• Uncertainty modelling in [4] is fine except it requires a BNN

• Changes to standard training procedure 
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Problem
• Uncertainty modelling in [4] is fine except it requires a BNN

• Changes to standard training procedure 

• Computational complexity

• Approximation quality to posterior is critical

• Reasonability of the assumed prior is critical

Simple and Scalable Predictive Uncertainty Estimation Using 
Deep Ensembles
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“We need a more general purpose solution to estimate uncertainty 
without changing the standard pipeline significantly”



Solution
• Step 1: using a proper loss

• NLL is a proper loss for uncertainty estimation

• Also utilized by [4]

• Output both mean and variance 
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Solution
• Step 2: ensembling

• Each model is trained with random initialization + shuffled data

• The sample variance of predictions as an uncertainty representation
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Solution
• Step 2: ensembling

• Each model is trained with random initialization + shuffled data

• The sample variance of predictions as an uncertainty representation

• Compute final mean and variance from the ensembled 𝑀 models 
• Gaussian mixture with uniform weights for mixture components

• 𝑀𝑒𝑎𝑛(𝑦) ≈
1

𝑀
σ𝑚=1
𝑀 ො𝑦𝑚

• 𝑉𝑎𝑟(𝑦) ≈
1

𝑀
σ𝑚=1
𝑀 ො𝜎𝑚

2 + ො𝑦𝑚
2 −𝑀𝑒𝑎𝑛 𝑦 2
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Solution
• Step 3 (optional): adversarial training

• Proposed by [7] 

• Generates an adversarial example
• 𝑥′ = 𝑥 + 𝜖 𝑠𝑖𝑔𝑛 𝛻𝑥𝑙 𝜃, 𝑥, 𝑦 where 𝑙 𝜃, 𝑥, 𝑦 is loss
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Solution
• Step 3 (optional): adversarial training

• Proposed by [7] 

• Generates an adversarial example
• 𝑥′ = 𝑥 + 𝜖 𝑠𝑖𝑔𝑛 𝛻𝑥𝑙 𝜃, 𝑥, 𝑦 where 𝑙 𝜃, 𝑥, 𝑦 is loss

• Training data is augmented using these examples

• Shown to improve robustness against adv. attacks [7]
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Solution
• Step 3 (optional): adversarial training

• Proposed by [7] 

• Generates an adversarial example
• 𝑥′ = 𝑥 + 𝜖 𝑠𝑖𝑔𝑛 𝛻𝑥𝑙 𝜃, 𝑥, 𝑦 where 𝑙 𝜃, 𝑥, 𝑦 is loss

• Training data is augmented using these examples

• Shown to improve robustness against adv. attacks [7]

• Here: use this to smooth the predicted distribution around 𝜖-neighbourhood
of data (thus increase the likelihood)

• Provides additional improvement (in some cases)
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Results
• Comparison with ensemble trained with MSE (instead of NLL)

• NLL yields better uncertainty
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Results
• Comparison with other baselines

• Better performance with higher # of nets 
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Results
• Uncertainty reliability

• Accuracy & confidence agrees well
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Discussion
• Competitive empirical results with BNN based approaches
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Discussion
• Competitive empirical results with BNN based approaches

• Requires multiple models for a single task
• Memory-constrained and real-time apps?
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Discussion
• Competitive empirical results with BNN based approaches

• Requires multiple models for a single task
• Memory-constrained and real-time apps?

• Some potentially insightful comparisons
• Comparison with MC dropout based on computation budget?

• Comparison with an ensemble of MC dropout models?
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Discussion
• Competitive empirical results with BNN based approaches

• Requires multiple models for a single task
• Memory-constrained and real-time apps?

• Some potentially insightful comparisons
• Comparison with MC dropout based on computation budget?

• Comparison with an ensemble of MC dropout models?

• Importance of adversarial training requires further investigation
• Comparison with standard data augmentation techniques?
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On Calibration of Modern Neural Networks 
[8]
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Problem
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• Though they have better acc than their older counterparts
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Problem
• Modern networks are overconfident in their predictions

• Though they have better acc than their older counterparts

• Gap between the confidence and accuracy = miscalibration
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“We need to understand 1) why miscalibration occurs in the current 
models and 2) how to solve this?”



Solution
• Metrics to evaluate miscalibration

• Factors for miscalibration

• Solving miscalibration
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Solution
• Metrics to evaluate miscalibration

• Perfect calibration
• 𝑃𝑟𝑜𝑏 ො𝑦𝑖 = 𝑦 Ƹ𝑝𝑖 = 𝑝) = 𝑝, ∀𝑝 ∈ [0,1]

• ො𝑦𝑖 prediction, Ƹ𝑝𝑖 associated confidence

• Given 100 predictions with confidence 0.7, 70 of them should be correct

• Impossible to achieve, but the closer the better

• Approximate empirically
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Solution
• Metrics to evaluate miscalibration

• Perfect calibration
• 𝑃𝑟𝑜𝑏 ො𝑦𝑖 = 𝑦 Ƹ𝑝𝑖 = 𝑝) = 𝑝, ∀𝑝 ∈ [0,1]

• ො𝑦𝑖 prediction, Ƹ𝑝𝑖 associated confidence

• Given 100 predictions with confidence 0.7, 70 of them should be correct

• Impossible to achieve, but the closer the better

• Approximate empirically

• Group samples into 𝑀 interval bins of size 1/𝑀

• Let 𝐵𝑚 is the set of sample indices in 
𝑚−1

𝑀
,
𝑚

𝑀

• Empirical Accuracy

• 𝑎𝑐𝑐 𝐵𝑚 =
1

|𝐵𝑚|
σ𝑖∈𝐵𝑚

𝟏(𝑦𝑖 = ො𝑦𝑖)

• Empirical Confidence

• 𝑐𝑜𝑛𝑓 𝐵𝑚 =
1

|𝐵𝑚|
σ𝑖∈𝐵𝑚

Ƹ𝑝𝑖
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Solution
• Metrics to evaluate miscalibration

• Reliability diagram
• Acc vs Conf curve
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Solution
• Metrics to evaluate miscalibration

• Reliability diagram
• Acc vs Conf curve

• Expected calibration error (ECE)

• 𝐸𝐶𝐸 = σ𝑚=1
𝑀 𝐵𝑚

𝑛
𝑎𝑐𝑐 𝐵𝑚 − 𝑐𝑜𝑛𝑓 𝐵𝑚

• Scalar summary statistics of reliability diagram
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Solution
• Metrics to evaluate miscalibration

• Reliability diagram
• Acc vs Conf curve

• Expected calibration error (ECE)

• 𝐸𝐶𝐸 = σ𝑚=1
𝑀 𝐵𝑚

𝑛
𝑎𝑐𝑐 𝐵𝑚 − 𝑐𝑜𝑛𝑓 𝐵𝑚

• Scalar summary statistics of reliability diagram

• Maximum calibration error (MCE)
• 𝑀𝐶𝐸 = max

𝑚∈{1,…,𝑀}
𝑎𝑐𝑐 𝐵𝑚 − 𝑐𝑜𝑛𝑓 𝐵𝑚

• Worst-case gap, critical for high-stakes apps
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Solution
• Metrics to evaluate miscalibration

• Reliability diagram
• Acc vs Conf curve

• Expected calibration error (ECE)

• 𝐸𝐶𝐸 = σ𝑚=1
𝑀 𝐵𝑚

𝑛
𝑎𝑐𝑐 𝐵𝑚 − 𝑐𝑜𝑛𝑓 𝐵𝑚

• Scalar summary statistics of reliability diagram

• Maximum calibration error (MCE)
• 𝑀𝐶𝐸 = max

𝑚∈{1,…,𝑀}
𝑎𝑐𝑐 𝐵𝑚 − 𝑐𝑜𝑛𝑓 𝐵𝑚

• Worst-case gap, critical for high-stakes apps

• Negative log likelihood (NLL)
• Standard measure of quality for a probabilistic model
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Solution
• Metrics to evaluate miscalibration

• Factors for miscalibration
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Solution
• Factors for miscalibration

• Deeper & wider models => poor calibration

93On Calibration of Modern Neural Networks



Solution
• Factors for miscalibration

• Batch normalization => poor calibration
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Solution
• Factors for miscalibration

• Lack of regularization => poor calibration

95On Calibration of Modern Neural Networks



Solution
• Factors for miscalibration

• Disconnect between NLL and 0/1 loss

• Better accuracy at the expense of well-calibrated model?
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Solution
• Metrics to evaluate miscalibration

• Factors for miscalibration

• Solving miscalibration
• Many approaches in literature

• They used a single parameter variant of Platt scaling, “temperature scaling”
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Solution
• Solving miscalibration

• Temperature scaling

• 𝑞𝑖 = max
𝑘∈1,…,𝐾

𝜎𝑆𝑀
𝑧𝑖

𝑇

(𝑘)

• 𝐾 classes, 𝑧𝑖 original logit vector, 𝜎𝑆𝑀 . (𝑘) softmax function,  𝑞𝑖 confidence
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Solution
• Solving miscalibration

• Temperature scaling
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𝑇
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• 𝐾 classes, 𝑧𝑖 original logit vector, 𝜎𝑆𝑀 . (𝑘) softmax function,  𝑞𝑖 confidence

• Decrease confidence of softmax output when 𝑇 > 1

• Optimize 𝑇 over validation set (freeze model)

• Performs best among other calibration choices
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Solution
• Solving miscalibration

• Temperature scaling

• 𝑞𝑖 = max
𝑘∈1,…,𝐾

𝜎𝑆𝑀
𝑧𝑖

𝑇

(𝑘)

• 𝐾 classes, 𝑧𝑖 original logit vector, 𝜎𝑆𝑀 . (𝑘) softmax function,  𝑞𝑖 confidence

• Decrease confidence of softmax output when 𝑇 > 1

• Optimize 𝑇 over validation set (freeze model)

• Performs best among other calibration choices

• Does not change maximum of softmax function
• Better calibration without decreasing accuracy
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Discussion
• Addresses overconfidence problem in classification NNs
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Discussion
• Addresses overconfidence problem in classification NNs

• Investigated possible reasons 
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Discussion
• Addresses overconfidence problem in classification NNs

• Investigated possible reasons 

• Provided a solution with empirical success
• Outperforms more complex approaches
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Discussion
• Addresses overconfidence problem in classification NNs

• Investigated possible reasons 

• Provided a solution with empirical success
• Outperforms more complex approaches

• Analysis done for ID
• OOD performance can be critical for practical apps
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