Robustness and Uncertainty Estimation for Visual Perception

Oğuzhan Fatih KAR VILAB, EDIC, EPFL

• Visual perception: understand the surrounding physical environment

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

Input Image

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

• Abstractions of real world

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

- Abstractions of real world
 - Useful for many downstream tasks, e.g. navigation [1]

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

- Abstractions of real world
 - Useful for many downstream tasks, e.g. navigation [1]
- Deep learning (DL) approaches are getting better and better [1],[2],[3]

- Visual perception: understand the surrounding physical environment
 - Requires solving different problems

- Abstractions of real world
 - Useful for many downstream tasks, e.g. navigation [1]
- Deep learning (DL) approaches are getting better and better [1],[2],[3]
 - Is it always the case?

• Robustness: resilience to distribution shifts

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

• Model may be wrong sometimes

- Robustness: resilience to distribution shifts
 - A critical requirement for practical applications

- Model may be wrong sometimes
 - Should be able to say "Hey, I'm not sure!"

• Uncertainty: A mechanism to understand model limitations

• Uncertainty: A mechanism to understand model limitations

• Uncertainty: A mechanism to understand model limitations

Input Image

Uncertainty

• Uncertainty: A mechanism to understand model limitations

Uncertainty

- Can be used for
 - improving robustness

• Uncertainty: A mechanism to understand model limitations

Brad Templeton. "Tesla In Taiwan Crashes Directly Into Overturned Truck, Ignores Pedestrian, With Autopilot On". Forbes, 2020.

- Can be used for
 - improving robustness
 - improving decision making

• Uncertainty: A mechanism to understand model limitations

Jessica Guynn. "Google photos labeled black people 'gorillas'". USA Today, 2015.

- Can be used for
 - improving robustness
 - improving decision making

• 3 background papers

- "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?" (Alex Kendall, Yarin Gal) [4]
- "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles" (Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell) [5]
- "On Calibration of Modern Neural Networks" (Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger)

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? [4]

- Deep learning has good performance, but is it always the case?
 - Tesla crash, Google photos labelling, etc.

- Deep learning has good performance, but is it always the case?
 - Tesla crash, Google photos labelling, etc.
- What happens when the model fails?

- Deep learning has good performance, but is it always the case?
 - Tesla crash, Google photos labelling, etc.
- What happens when the model fails?
 - Need for an alarm mechanism

- Deep learning has good performance, but is it always the case?
 - Tesla crash, Google photos labelling, etc.
- What happens when the model fails?
 - Need for an alarm mechanism

"We are mostly interested in knowing how likely certain outcomes are rather than just using the most likely one"

- Sources of uncertainty
- Modelling uncertainty

- Sources of uncertainty
 - Aleatoric uncertainty
 - Data uncertainty
 - Captures noise inherent in the observations
 - A function of input
 - E.g. sensor noise and blur

- Sources of uncertainty
 - Aleatoric uncertainty
 - Data uncertainty
 - Captures noise inherent in the observations
 - A function of input
 - E.g. sensor noise and blur
 - Can't decreased with more data

- Sources of uncertainty
 - Aleatoric uncertainty
 - Data uncertainty
 - Captures noise inherent in the observations
 - A function of input
 - E.g. sensor noise and blur
 - Can't decreased with more data
 - Can decrease with increasing sensing ability

- Sources of uncertainty
 - Aleatoric uncertainty
 - Two variants
 - *Homoscedastic* : Constant for all inputs
 - Could change between tasks

- Sources of uncertainty
 - Aleatoric uncertainty
 - Two variants
 - *Homoscedastic* : Constant for all inputs
 - Could change between tasks
 - Heteroscedastic : Changes between inputs
 - Useful for vision tasks
 - Could be learned from data

- Sources of uncertainty
 - Epistemic uncertainty
 - Model uncertainty
 - Captures uncertainty in model parameters
 - "Which model generated our data?"

- Sources of uncertainty
 - Epistemic uncertainty
 - Model uncertainty
 - Captures uncertainty in model parameters
 - "Which model generated our data?"
 - Can be decreased with more data

- Sources of uncertainty
 - Aleatoric vs Epistemic

- Sources of uncertainty \checkmark
- Modelling uncertainty
 - Aleatoric uncertainty
 - Function of input
 - Model it over outputs
 - Epistemic uncertainty:
 - Function of model
 - Model it over parameters (i.e. weights)

- Modelling aleatoric uncertainty
 - Regression model with parameters θ
 - Dataset: input $X = \{x_1, \dots, x_N\}$ and label $Y = \{y_1, \dots, y_N\}$
 - Assume Gaussian likelihood

- Modelling aleatoric uncertainty
 - Regression model with parameters θ
 - Dataset: input $X = \{x_1, \dots, x_N\}$ and label $Y = \{y_1, \dots, y_N\}$
 - Assume Gaussian likelihood
 - Negative log-likelihood loss (NLL)

•
$$L_{NN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} \|y_i - f(x_i)\|_2^2 + \frac{1}{2} \log \sigma(x_i)^2$$

- Modelling aleatoric uncertainty
 - Regression model with parameters θ
 - Dataset: input $X = \{x_1, \dots, x_N\}$ and label $Y = \{y_1, \dots, y_N\}$
 - Assume Gaussian likelihood
 - Negative log-likelihood loss (NLL)
 - $L_{NN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} \|y_i f(x_i)\|_2^2 + \frac{1}{2} \log \sigma(x_i)^2$
 - Predict mean $f(x_i)$ and variance $\sigma(x_i)^2$
 - Use them in the NLL
 - No label needed for $\sigma(x_i)^2$

- Modelling aleatoric uncertainty
 - Negative log-likelihood loss (NLL)

•
$$L_{NN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} \|y_i - f(x_i)\|_2^2 + \frac{1}{2} \log \sigma(x_i)^2$$

- For heteroscedastic case, changes with input x_i
- For homoscedastic case, constant free parameter

- Modelling aleatoric uncertainty
 - Negative log-likelihood loss (NLL) 1

•
$$L_{NN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} ||y_i - f(x_i)||_2^2 + \frac{1}{2} \log \sigma(x_i)^2$$

- For heteroscedastic case, changes with input x_i
- For homoscedastic case, constant free parameter
- Balance between 1&2
 - Can't be overconfident (1 1)
 - Can't be over-uncertain (21)
 - No manual tuning

2

- Sources of uncertainty \checkmark
- Modelling aleatoric uncertainty \checkmark
- Modelling epistemic uncertainty
 - Assume a prior over model weights W, e.g. $W \sim N(0, I)$
 - Compute posterior p(W|X,Y) = p(Y|X,W)p(W)/p(Y|X)
 - Intractable, hence approximate
 - They use MC dropout [4]

- Sources of uncertainty \checkmark
- Modelling aleatoric uncertainty \checkmark
- Modelling epistemic uncertainty
 - Assume a prior over model weights W, e.g. $W \sim N(0, I)$
 - Compute posterior p(W|X,Y) = p(Y|X,W)p(W)/p(Y|X)
 - Intractable, hence approximate
 - They use MC dropout [5]
 - MC dropout
 - Training time: Use dropout for every weight layer
 - Test time: Use dropout to sample from posterior
 - Variance of the samples: Epistemic uncertainty

(a) Standard Neural Net

(b) After applying dropout.

- Combining both uncertainties
 - Output both mean \hat{y} and variance $\hat{\sigma}^2$
 - Use the NLL for training

- Combining both uncertainties
 - Output both mean \hat{y} and variance $\hat{\sigma}^2$
 - Use the NLL for training
 - $s_i := \log \hat{\sigma}_i^2$ for numerical stability
 - $f^{\widehat{W}} = [\widehat{y}, \widehat{\sigma}^2]$
 - $L_{BNN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \exp(-s_i) \|y_i \hat{y}_i\|_2^2 + \frac{1}{2} s_i$

- Combining both uncertainties
 - Output both mean \hat{y} and variance $\hat{\sigma}^2$
 - Use the NLL for training
 - $s_i := \log \hat{\sigma}_i^2$ for numerical stability
 - $f^{\widehat{W}} = [\widehat{y}, \widehat{\sigma}^2]$
 - $L_{BNN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \exp(-s_i) \|y_i \hat{y}_i\|_2^2 + \frac{1}{2} s_i$
 - Perform T passes with dropout enabled (test time)

- Combining both uncertainties
 - Output both mean \hat{y} and variance $\hat{\sigma}^2$
 - Use the NLL for training
 - $s_i := \log \hat{\sigma}_i^2$ for numerical stability
 - $f^{\widehat{W}} = [\widehat{y}, \widehat{\sigma}^2]$
 - $L_{BNN}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \exp(-s_i) \|y_i \hat{y}_i\|_2^2 + \frac{1}{2} s_i$
 - Perform T passes with dropout enabled (test time)
 - Final predictive uncertainty is the summation of both terms

•
$$Var(y) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_{t}^{2} + \frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}^{2} - \left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}\right)^{2}$$

aleatoric epistemic

- Pixel-wise depth regression and semantic segmentation
- Aleatoric uncertainty as loss attenuation
 - Improves accuracy
 - Modelling both uncertainties improve further

- Pixel-wise depth regression and semantic segmentation
- Aleatoric uncertainty as loss attenuation
 - Improves accuracy
 - Modelling both uncertainties improve further

• Precision decreases with increasing uncertainty

• Epistemic uncertainty decreases with increasing training data

Train dataset	Test dataset	RMS	Aleatoric variance	Epistemic variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2		0.388	15.0
Make3D	NYUv2		0.461	4.87

- Epistemic uncertainty decreases with increasing training data
- Aleatoric uncertainty does not decrease with more data

Train dataset	Test dataset	RMS	Aleatoric variance	Epistemic variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2		0.388	15.0
Make3D	NYUv2		0.461	4.87

- Epistemic uncertainty decreases with increasing training data
- Aleatoric uncertainty does not decrease with more data
- Epistemic uncertainty increases with distribution shift

Train	Test	RMS	Aleatoric	Epistemic
dataset	dataset		variance	variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2		0.388	15.0
Make3D	NYUv2		0.461	4.87

• Combining different sources of uncertainty

- Combining different sources of uncertainty
- Showcasing results for both regression and classification tasks

- Combining different sources of uncertainty
- Showcasing results for both regression and classification tasks
- Aleatoric uncertainty adds negligible compute

- Combining different sources of uncertainty
- Showcasing results for both regression and classification tasks
- Aleatoric uncertainty adds negligible compute
- Epistemic uncertainty needs multiple passes
 - Real-time application?

Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles [6]

- Uncertainty modelling in [4] is fine except it requires a BNN
 - Changes to standard training procedure

- Uncertainty modelling in [4] is fine except it requires a BNN
 - Changes to standard training procedure
 - Computational complexity

- Uncertainty modelling in [4] is fine except it requires a BNN
 - Changes to standard training procedure
 - Computational complexity
 - Approximation quality to posterior is critical

- Uncertainty modelling in [4] is fine except it requires a BNN
 - Changes to standard training procedure
 - Computational complexity
 - Approximation quality to posterior is critical
 - Reasonability of the assumed prior is critical

- Uncertainty modelling in [4] is fine except it requires a BNN
 - Changes to standard training procedure
 - Computational complexity
 - Approximation quality to posterior is critical
 - Reasonability of the assumed prior is critical

"We need a more general purpose solution to estimate uncertainty without changing the standard pipeline significantly"

- Step 1: using a proper loss
 - NLL is a proper loss for uncertainty estimation
 - Also utilized by [4]
 - Output both mean and variance

- Step 2: ensembling
 - Each model is trained with random initialization + shuffled data
 - The sample variance of predictions as an uncertainty representation

• Step 2: ensembling

- Each model is trained with random initialization + shuffled data
- The sample variance of predictions as an uncertainty representation
- Compute final mean and variance from the ensembled *M* models
 - Gaussian mixture with uniform weights for mixture components

•
$$Mean(y) \approx \frac{1}{M} \sum_{m=1}^{M} \hat{y}_m$$

•
$$Var(y) \approx \frac{1}{M} \sum_{m=1}^{M} (\hat{\sigma}_m^2 + \hat{y}_m^2) - Mean(y)^2$$

- Step 3 (optional): adversarial training
 - Proposed by [7]
 - Generates an adversarial example

• $x' = x + \epsilon \operatorname{sign}(\nabla_x l(\theta, x, y))$ where $l(\theta, x, y)$ is loss

- Step 3 (optional): adversarial training
 - Proposed by [7]
 - Generates an adversarial example

• $x' = x + \epsilon \operatorname{sign}(\nabla_x l(\theta, x, y))$ where $l(\theta, x, y)$ is loss

- Training data is augmented using these examples
- Shown to improve robustness against adv. attacks [7]

- Step 3 (optional): adversarial training
 - Proposed by [7]
 - Generates an adversarial example

• $x' = x + \epsilon sign(\nabla_x l(\theta, x, y))$ where $l(\theta, x, y)$ is loss

- Training data is augmented using these examples
- Shown to improve robustness against adv. attacks [7]

- Here: use this to smooth the predicted distribution around ϵ -neighbourhood of data (thus increase the likelihood)
- Provides additional improvement (in some cases)
Results

• Comparison with ensemble trained with MSE (instead of NLL)

• NLL yields better uncertainty

Results

• Comparison with other baselines

• Better performance with higher # of nets

Results

• Uncertainty reliability

• Accuracy & confidence agrees well

• Competitive empirical results with BNN based approaches

- Competitive empirical results with BNN based approaches
- Requires multiple models for a single task
 - Memory-constrained and real-time apps?

- Competitive empirical results with BNN based approaches
- Requires multiple models for a single task
 - Memory-constrained and real-time apps?
- Some potentially insightful comparisons
 - Comparison with MC dropout based on computation budget?
 - Comparison with an ensemble of MC dropout models?

- Competitive empirical results with BNN based approaches
- Requires multiple models for a single task
 - Memory-constrained and real-time apps?
- Some potentially insightful comparisons
 - Comparison with MC dropout based on computation budget?
 - Comparison with an ensemble of MC dropout models?
- Importance of adversarial training requires further investigation
 - Comparison with standard data augmentation techniques?

On Calibration of Modern Neural Networks [8]

- Modern networks are overconfident in their predictions
 - Though they have better acc than their older counterparts

- Modern networks are overconfident in their predictions
 - Though they have better acc than their older counterparts
- Gap between the confidence and accuracy = miscalibration

- Modern networks are overconfident in their predictions
 - Though they have better acc than their older counterparts
- Gap between the confidence and accuracy = miscalibration

"We need to understand 1) why miscalibration occurs in the current models and 2) how to solve this?"

- Metrics to evaluate miscalibration
- Factors for miscalibration
- Solving miscalibration

- Metrics to evaluate miscalibration
 - Perfect calibration
 - $Prob(\hat{y}_i = y \mid \hat{p}_i = p) = p, \forall p \in [0,1]$
 - \hat{y}_i prediction, \hat{p}_i associated confidence
 - Given 100 predictions with confidence 0.7, 70 of them should be correct
 - Impossible to achieve, but the closer the better
 - Approximate empirically

- Metrics to evaluate miscalibration
 - Perfect calibration
 - $Prob(\hat{y}_i = y \mid \hat{p}_i = p) = p, \forall p \in [0,1]$
 - \hat{y}_i prediction, \hat{p}_i associated confidence
 - Given 100 predictions with confidence 0.7, 70 of them should be correct
 - Impossible to achieve, but the closer the better
 - Approximate empirically
 - Group samples into M interval bins of size 1/M
 - Let B_m is the set of sample indices in $\left(\frac{m-1}{M}, \frac{m}{M}\right)$
 - Empirical Accuracy

•
$$acc(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(y_i = \hat{y}_i)$$

• Empirical Confidence

•
$$conf(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i$$

- Metrics to evaluate miscalibration
 - Reliability diagram
 - Acc vs Conf curve

- Metrics to evaluate miscalibration
 - Reliability diagram
 - Acc vs Conf curve
 - Expected calibration error (ECE)
 - $ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} |acc(B_m) conf(B_m)|$
 - Scalar summary statistics of reliability diagram

- Metrics to evaluate miscalibration
 - Reliability diagram
 - Acc vs Conf curve
 - Expected calibration error (ECE)
 - $ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} |acc(B_m) conf(B_m)|$
 - Scalar summary statistics of reliability diagram
 - Maximum calibration error (MCE)
 - $MCE = \max_{m \in \{1,\dots,M\}} |acc(B_m) conf(B_m)|$
 - Worst-case gap, critical for high-stakes apps

- Metrics to evaluate miscalibration
 - Reliability diagram
 - Acc vs Conf curve
 - Expected calibration error (ECE)
 - $ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} |acc(B_m) conf(B_m)|$
 - Scalar summary statistics of reliability diagram
 - Maximum calibration error (MCE)
 - $MCE = \max_{m \in \{1,\dots,M\}} |acc(B_m) conf(B_m)|$
 - Worst-case gap, critical for high-stakes apps
 - Negative log likelihood (NLL)
 - Standard measure of quality for a probabilistic model

- Metrics to evaluate miscalibration \checkmark
- Factors for miscalibration

- Factors for miscalibration
 - Deeper & wider models => poor calibration

- Factors for miscalibration
 - Batch normalization => poor calibration

- Factors for miscalibration
 - Lack of regularization => poor calibration

- Factors for miscalibration
 - Disconnect between NLL and 0/1 loss
 - Better accuracy at the expense of well-calibrated model?

- Metrics to evaluate miscalibration \checkmark
- Factors for miscalibration \checkmark
- Solving miscalibration
 - Many approaches in literature
 - They used a single parameter variant of Platt scaling, "temperature scaling"

- Solving miscalibration
 - Temperature scaling

•
$$q_i = \max_{k \in 1, \dots, K} \sigma_{SM} \left(\frac{z_i}{T}\right)^{(k)}$$

• K classes, z_i original logit vector, $\sigma_{SM}(.)^{(k)}$ softmax function, q_i confidence

- Solving miscalibration
 - Temperature scaling

•
$$q_i = \max_{k \in 1, \dots, K} \sigma_{SM} \left(\frac{z_i}{T}\right)^{(k)}$$

- K classes, z_i original logit vector, $\sigma_{SM}(.)^{(k)}$ softmax function, q_i confidence
- Decrease confidence of softmax output when T > 1

- Solving miscalibration
 - Temperature scaling
 - $q_i = \max_{k \in 1, \dots, K} \sigma_{SM} \left(\frac{z_i}{T}\right)^{(k)}$
 - K classes, z_i original logit vector, $\sigma_{SM}(.)^{(k)}$ softmax function, q_i confidence
 - Decrease confidence of softmax output when T > 1
 - Optimize *T* over validation set (freeze model)

- Solving miscalibration
 - Temperature scaling
 - $q_i = \max_{k \in 1, \dots, K} \sigma_{SM} \left(\frac{z_i}{T}\right)^{(k)}$
 - K classes, z_i original logit vector, $\sigma_{SM}(.)^{(k)}$ softmax function, q_i confidence
 - Decrease confidence of softmax output when T > 1
 - Optimize T over validation set (freeze model)
 - Performs best among other calibration choices

- Solving miscalibration
 - Temperature scaling
 - $q_i = \max_{k \in 1, \dots, K} \sigma_{SM} \left(\frac{z_i}{T}\right)^{(k)}$
 - K classes, z_i original logit vector, $\sigma_{SM}(.)^{(k)}$ softmax function, q_i confidence
 - Decrease confidence of softmax output when T > 1
 - Optimize T over validation set (freeze model)
 - Performs best among other calibration choices
 - Does not change maximum of softmax function
 - Better calibration without decreasing accuracy

• Addresses overconfidence problem in classification NNs

- Addresses overconfidence problem in classification NNs
- Investigated possible reasons

- Addresses overconfidence problem in classification NNs
- Investigated possible reasons
- Provided a solution with empirical success
 - Outperforms more complex approaches

- Addresses overconfidence problem in classification NNs
- Investigated possible reasons
- Provided a solution with empirical success
 - Outperforms more complex approaches
- Analysis done for ID
 - OOD performance can be critical for practical apps

References

[1] A. Sax, J. O. Zhang, B. Emi, A. Zamir, S. Savarese, L. Guibas, and J. Malik, "Learning to navigate using mid-level visual priors," in Conference on Robot Learning, 2020, pp. 791–812.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., "End to end learning for self-driving cars," arXiv preprint arXiv:1604.07316, 2016.

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," nature, vol. 542, no. 7639, pp. 115–118, 2017.

[4] A. Kendall and Y. Gal, "What uncertainties do we need in Bayesian deep learning for computer vision?" in Advances in Neural Information Processing Systems, 2017, pp. 5574–5584.

[5] B. Lakshminarayanan, A. Pritzel, and C. Blundell, "Simple and scalable predictive uncertainty estimation using deep ensembles," in Advances in Neural Information Processing Systems, 2017, pp. 6402–6413.

[6] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, "On calibration of modern neural networks," in International Conference on Machine Learning, 2017, pp. 1321–1330.

[7] Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in International Conference on Machine Learning, 2016, pp. 1050–1059.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv preprint arXiv:1412.6572, 2014.

[9] J. Jo and Y. Bengio, "Measuring the tendency of cnns to learn surface statistical regularities," arXiv preprint arXiv:1711.11561, 2017.

[10] D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer, "A fourier perspective on model robustness in computer vision," in Advances in

Neural Information Processing Systems, 2019, pp. 13 276–13 286.

Thank You